496 research outputs found

    Near Forward pp Elastic Scattering at LHC and Nucleon Structure

    Full text link
    High energy proton-proton and antiproton-proton elastic scattering are studied first in a model where the nucleon has an outer cloud and an inner core. Elastic scattering is viewed as due to two processes: a) diffraction scattering originating from cloud-cloud interaction; b) a hard or large |t| scattering originating from one nucleon core scattering off the other via vector meson omega exchange, while their outer clouds interact independently. The omega-exchange amplitude shows that omega behaves like an elementary vector meson at high energy, contrary to a regge pole behavior. This behavior, however, can be understood in the nonlinear sigma-model where omega couples to a topological baryonic current like a gauge boson, and the nucleon is described as a topological soliton. Further investigation shows that the underlying effective field theory model is a gauged linear sigma-model that has not only the pion sector and the Wess-Zumino-Witten action of the nonlinear sigma-model, but also a quark-scalar sector. The nucleon structure that emerges is that the nucleon has an outer cloud of quark-antiquark condensed ground state, an inner core of topological baryonic charge probed by omega, and a still smaller quark-bag containing massless valence quarks. Large |t| pp elastic scattering is attributed to valence quark-quark elastic scattering, which is taken to be due to the hard pomeron. The model is applied to predict pp elastic differential cross section at LHC at c.m. energy 14 TeV and |t| = 0 - 10 GeV*2. If our predicted differential cross section is quantitatively confirmed by precise measurement at LHC by the TOTEM group, then it will indicate that various novel ideas developed over the last four decades to describe the nucleon combine and lead to a unique physical description of its structure.Comment: 49 pages including 17 figures. Submitted to Int. J. Mod. Phys.

    Antiferromagnetism in doped anisotropic two-dimensional spin-Peierls systems

    Full text link
    We study the formation of antiferromagnetic correlations induced by impurity doping in anisotropic two-dimensional spin-Peierls systems. Using a mean-field approximation to deal with the inter-chain magnetic coupling, the intra-chain correlations are treated exactly by numerical techniques. The magnetic coupling between impurities is computed for both adiabatic and dynamical lattices and is shown to have an alternating sign as a function of the impurity-impurity distance, hence suppressing magnetic frustration. An effective model based on our numerical results supports the coexistence of antiferromagnetism and dimerization in this system.Comment: 5 pages, 4 figures; final version to appear in Phys. Rev.

    Hadronic sizes and observables in high-energy scattering

    Get PDF
    The functional dependence of the high-energy observables of total cross section and slope parameter on the sizes of the colliding hadrons predicted by the model of the stochastic vacuum and the corresponding relations used in the geometric model of Povh and H\"ufner are confronted with the experimental data. The existence of a universal term in the expression for the slope, due purely to vacuum effects, independent of the energy and of the particular hadronic system, is investigated. Accounting for the two independent correlation functions of the QCD vacuum, we improve the simple and consistent description given by the model of the stochastic vacuum to the high-energy pp and pbar-p data, with a new determination of parameters of non-perturbative QCD. The increase of the hadronic radii with the energy accounts for the energy dependence of the observables.Comment: Latex, using Revtex.style . 2 ps figures. To be published in Physical Review D , July 199

    Line shapes of dynamical correlation functions in Heisenberg chains

    Full text link
    We calculate line shapes of correlation functions by use of complete diagonalization data of finite chains and analytical implications from conformal field theory, density of states, and Bethe ansatz. The numerical data have different finite size accuracy in case of the imaginary and real parts in the frequency and time representations of spin-correlation functions, respectively. The low temperature, conformally invariant regime crosses over at T0.7JT^*\approx 0.7J to a diffusive regime that in turn connects continuously to the high temperature, interacting fermion regime. The first moment sum rule is determined.Comment: 13 pages REVTEX, 18 figure

    Hadronic Total Cross-sections Through Soft Gluon Summation in Impact Parameter Space

    Get PDF
    The Bloch-Nordsieck model for the parton distribution of hadrons in impact parameter space, constructed using soft gluon summation, is investigated in detail. Its dependence upon the infrared structure of the strong coupling constant αs\alpha_s is discussed, both for finite as well as singular, but integrable, αs\alpha_s. The formalism is applied to the prediction of total proton-proton and proton-antiproton cross-sections, where screening, due to soft gluon emission from the initial valence quarks, becomes evident.Comment: 20 pages, Latex2e, input FEYNMAN,12 postscipt figures. Submitted to PR

    Three-Dimensional Ordering in Weakly Coupled Antiferromagnetic Ladders and Chains

    Full text link
    A theoretical description is presented for low-temperature magnetic-field induced three-dimensional (3D) ordering transitions in strongly anisotropic quantum antiferromagnets, consisting of weakly coupled antiferromagnetic spin-1/2 chains and ladders. First, effective continuum field theories are derived for the one-dimensional subsystems. Then the Luttinger parameters, which determine the low-temperature susceptibilities of the chains and ladders, are calculated from the Bethe ansatz solution for these effective models. The 3D ordering transition line is obtained using a random phase approximation for the weak inter-chain (inter-ladder) coupling. Finally, considering a Ginzburg criterion, the fluctuation corrections to this approach are shown to be small. The nature of the 3D ordered phase resembles a Bose condensate of integer-spin magnons. It is proposed that for systems with higher spin degrees of freedom, e.g. N-leg spin-1/2 ladders, multi-component condensates can occur at high magnetic fields.Comment: RevTex, 18 pages with 7 figure

    Peierls Dimerization with Non-Adiabatic Spin-Phonon Coupling

    Get PDF
    We study the magnetic properties of a frustrated Heisenberg spin chain with a dynamic spin-phonon interaction. By Lanczos diagonalization, preserving the full lattice dynamics, we explore the non-adiabatic regime with phonon frequencies comparable to the exchange coupling energy which is e.g. the relevant limit for the spin-Peierls compound CuGeO3CuGeO_3. When compared to the static limit of an alternating spin chain the magnetic properties are strongly renormalized due to the coupled dynamics of spin and lattice degrees of freedom. The magnitude of the spin triplet excitation gap changes from a strong to a weak dimerization dependence with increasing phonon frequencies implying the necessity to include dynamic effects in an attempt for a quantitative description of the spin-Peierls state.Comment: 4 pages, 5 figure

    Mixing of magnetic and phononic excitations in incommensurate Spin-Peierls systems

    Full text link
    We analyze the excitation spectra of a spin-phonon coupled chain in the presence of a soliton. This is taken as a microscopic model of a Spin-Peierls material placed in a high magnetic field. We show, by using a semiclassical approximation in the bosonized representation of the spins that a trapped magnetic state obtained in the adiabatic approximation is destroyed by dynamical phonons. Low energy states are phonons trapped by the soliton. When the magnetic gap is smaller than the phonon frequencies the only low energy state is a mixed magneto-phonon state with the energy of the gap. We emphasize that our results are relevant for the Raman spectra of the inorganic Spin-Peierls material CuGeO3_3.Comment: 5 pages, latex, 2 figures embedded in the tex

    X-ray micro-tomography and pore network modeling of single-phase fixed-bed reactors.

    Get PDF
    A three-dimensional (3D) irregular and unstructured pore network was built using local topological and geometrical properties of an isometric bead pack imaged by means of a high-resolution X-ray computed micro-tomography technique. A pore network model was developed to analyze the 3D laminar/inertial(non-Darcy) flows at the mesoscopic (pore level) and macroscopic (after ensemble-averaging) levels. The non-linear laminar flow signatures were captured at the mesoscale on the basis of analogies with contraction and expansion friction losses. The model provided remarkably good predictions of macroscopic frictional loss gradient in Darcy and non-Darcy regimes with clear-cut demarcation using channel-based Reynolds number statistics. It was also able to differentiate contributions due to pore and channel linear losses, and contraction/expansion quadratic losses. Macroscopic mechanical dispersion was analyzed in terms of retroflow channels, and transverse and longitudinal Péclet numbers. The model qualitatively retrieved the Péclet-Reynolds scaling law expected for heterogeneous networks with predominance of mechanical dispersion. Advocated in watermark is the potential of pore network modeling to build a posteriori constitutive relations for the closures of the more conventional macroscopic Euler approaches to capture more realistically single-phase flow phenomena in fixed-bed reactor applications in chemical engineering

    Excitation Spectra of Structurally Dimerized and Spin-Peierls Chains in a Magnetic Field

    Full text link
    The dynamical spin structure factor and the Raman response are calculated for structurally dimerized and spin-Peierls chains in a magnetic field, using exact diagonalization techniques. In both cases there is a spin liquid phase composed of interacting singlet dimers at small fields h < h_c1, an incommensurate regime (h_c1 < h < h_c2) in which the modulation of the triplet excitation spectra adapts to the applied field, and a fully spin polarized phase above an upper critical field h_c2. For structurally dimerized chains, the spin gap closes in the incommensurate phase, whereas spin-Peierls chains remain gapped. In the spin liquid regimes, the dominant feature of the triplet spectra is a one-magnon bound state, separated from a continuum of states at higher energies. There are also indications of a singlet bound state above the one-magnon triplet.Comment: RevTex, 10 pages with 8 eps figure
    corecore